CIRCULATION COPY SUBJECT TO RECALL IN TWO WEEKS # A SAFETY ANALYSIS OF THE NUCLEAR CHEMISTRY BUILDING 151 Don Kvam June 29, 1984 This is an informal report intended primarily for internal or limited external distribution. The opinious and conclusions stated are those of the author and may or may not be those of the Laboratory. Work performed under the ampices of the U.S. Department of Energy by the Lawrence Liberatory under Contract W-7405-Eng-48. #### DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endoraement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government thereof, and shall not be used for advertising or product endorsement purposes. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$; Microfiche \$4.50 | Page Range | Domestic
Price | Page Range | Domestic
Price | | | |------------|-------------------|---------------------|-------------------|--|--| | 001-025 | \$ 7.00 | 326-350 | \$ 26.50 | | | | 026-050 | 8.50 | 351-375 | 28.00 | | | | 051-075 | 10.00 | 376-400 | 29.50 | | | | 076-100 | 11.50 | 401-426 | 31.00 | | | | 101-125 | 13.00 | 427-450 | 32.50 | | | | 126-150 | 14.50 | 451-475 | 34.00 | | | | 151-175 | 16.00 | 476-500 | 35.50 | | | | 176-200 | 17.50 | 501-525 | 37.00 | | | | 201-225 | 19.00 | 526-550 | 38.50 | | | | 226-250 | 20.50 | 551-575 | 40.00 | | | | 251-275 | 22.00 | 576-600 | 41.50 | | | | 276-300 | 23.50 | 601-up ¹ | | | | | 301-325 | 25.00 | | · | | | ¹Add 1.50 for each additional 25 page increment, or portion thereof from 601 pages up. #### SAFETY ANALYSIS OF BUILDING 151 #### **ABSTRACT** This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the "low hazard" classification. No further safety evaluation is indicated at this time. #### INTRODUCTION Building 151 is administered by the Nuclear Chemistry Department. This department develops and applies radiochemical techniques to conduct a broad range of analytical measurements and scientific studies in support of Laboratory programs. Table 3 of this report lists the functions of all the individual laboratories in the building. A group was formed to evaluate Bldg. 151 from the viewpoint of DOE Order 5481.1A, Safety Analysis and Review System. This order calls for a detailed formal safety analysis if the facility has the potential for causing "considerable" impacts on people or the environment. The purpose of this study was to determine if major impacts were credible and if further safety analysis was required. The analysis group, managed by W. L. Eneidi, consisted of S. G. Leeds, Fire Safety; G. E. Costella, Industrial Hygiene; C. D. Burgin, Industrial Safety; D. J. Kvam, Safety Analysis; T. Straume and S. Homann, Health Physics; M. Dreicer, Environmental Evaluations; and R. J. Dupzyk, Facility Manager. #### **METHODOLOGY** Reviewing the areas of their particular discipline, each member of the review group inspected the facility so that they could assure the following: - o All identifiable hazards were controlled or mitigated. - There was reasonable assurance that the facility was operated in a manner that would preclude undue risks to the health and safety of the public and employees, and that property and the environment were adequately protected. The enclosed Tables 1 and 2 list some of the hazardous elements found in the building and make a qualitative assessment of their risk. Table 1 is composed of generic hazards, such as coming in contact with electricity or falling. These are hazards that are common to almost all facilities and are recognized and accepted by the general public. They are included here to assure the reader that the safety analysis examined all potentially hazardous energy sources. Table 2 lists some of the more esoteric hazards found in the building. It is difficult to conceive of a situation where these hazards threaten the life of more than one person. While an individual in the facility could be seriously injured, no element projected a significant impact on people outside the building or the environment and, therefore, the facility was categorized as low hazard. "Low" being an activity that presents minor on-site (outside Building 151) and negligible off-site impacts to people or the environment. #### MAXIMUM CREDIBLE ACCIDENT The maximum credible accident which could contribute to both on-site and offsite consequences was determined to be a major fire involving chemicals or radioactive materials. Table 3 lists the radioactive materials which could contribute to an atmospheric dispersion should they be involved in the postulated fire. If this entire inventory is released, radiological impact onsite and off-site is well below the exposure standards given by the Department of Energy in DOE Chapter 0531. (See Table 4.) Table 5 is the storeroom stock list at Building 151. Assuming a storeroom fire lasting 20 minutes and resulting in 50% of the inventory being released from the building, the rate would be 6.8×10^5 mg/sec airborne. This would result in a fence line concentration of 884 mg/m^3 . Assuming that the mixture of the chemicals and their combustion products has a moderate toxicity level, the short term (15 minutes) exposure limit is approximately $1-2 \text{ mg/m}^3$. Clearly, an individual downwind from the postulated fire for a period of time could be injured to some degree. It should also be noted that an individual immediately downwind from <u>any</u> fire will probably suffer some damage in the form of irritation, chronic or irreversible tissue change, or narcosis of a sufficient degree to impair self-rescue. The point being that Building 151 presents no unique hazard. The hazards from fire are recognized by the public and as we do with the automobile, we "live with it." Hazards recognized and accepted by the public are beyond the scope of the DOE Order 5481.1A. #### FIRE ANALYSIS Since fire is a part of the maximum credible accident, it is appropriate to discuss fire protection and what the maximum <u>probable</u> fire involves. Building 151 is a fire-resistive masonry structure with no nearby buildings and is protected by a fully supervised automatic wet-pipe sprinkler system. In addition to automatic fire protection and detection systems, the building has portable fire extinguishers placed throughout for the use of building occupants. Fire Department response time is approximately three minutes after the receipt of an alarm or request for aid. The above mentioned conditions would limit the maximum probable fire to a \$5-10K loss. #### CONCLUSION While this investigation has determined that Building 151 is a low hazard facility and therefore no further analysis is indicated, this should not be interpreted to mean that safety will be neglected. The facility employs a full-time safety person and is routinely visited by the safety discipline specialists of Hazards Control Team 4. The people working in Building 151 and their managers have the main responsibilities for safety and they employ a variety of techniques for assuring the continuance of a good safety record. For example, the reader is referred to the Facility Safety Procedures. This document gives details concerning the building, its operation, its hazards and controls, and lists the responsible individuals. ### TABLE 1: Hazards Common to Most Facilities ## PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL
MODE | EVENT CAUSING
HAZARDOUS
CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|----------------------|------------------------------|---------------------|---|---|---|---|----------------------|---------------|--| | I | Falling objects | Building
and
Equipment | All | Earthquake | Structural
Defect | Structural
Failure(s)) | Fatalities
and equip-
ment damage | I | Ĺ | Adequate design for earthquake loading; employee training. | | 2 | Gravity
Hoists | Material | Operating | Rigging
Failure | Falling
Load | Load
Strikes
personnel | Injury
Material
Damage | II | L | Adequate equipment design; employee training. | | 3 | Gravity | Walking/
Working | Operating | Slip/Trip/
Fall | Obstruction
slip hazard
on stairs,
ladder,
walkway. | Employee
falls | Injury | 11 | M | Design applicable
& standards; good
housekeeping;
employee training. | | 4 | Gravity | Elevators | Operating | Hydraulic
Equipment
Failure | Equipment
Defect | Crane Cab
Falls | Fatality
Injury
Equipment
Damage | I | U | Design to applicable code. Inspection/maintenance repairs. | | 5 | Rotating
Parts | Power
Machine
Tools | Operating | Employee
caught on
rotating
part | Clothing/
body part
too close
to rotating
part | Rotating
part
strikes
employee | Injury | П | M | Use of hand tools to
feed materials into
machine. Loose
clothing, hair.
Employee training. | ## TABLE 1 (continued) ## PRUBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL
MODE | EVENT CAUSING
HAZARDOUS
CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|---------------------------------------|--------------------------------------|---------------------------|---|--|---|--|----------------------|---------------|---| | 6 | V Belt
Gears | Power
Equipment | Operating | Employee
caught on
on rotating | Exposed
V belt or
gear | Rotating
part | Injury | 11 | L | Guard per applicable codes and standards. Employee training. | | 7 | Rotating
part | Centri-
fuges | Operating | Rotor
Failure | Defect in rotor | Shrapnel
strikes
employee | Injury,
Property
Damage | II | U | Shielded design.
Rotors run at low
speeds. | | 8 | Pressure | Compressed
Gas
Cylinders | Operating
or
Stored | Cylinder
falls/
struck by
object | Valve
damage or
failure | Shrapnel
strikes
employee | Injury,
Property
Damage | II | L | Cylinders secured.
Storage in tow
traffic areas.
Personnel training. | | 9 | Pressure | Pressur-
ized lines
& Fittings | Operating | Over-
Pressur-
ization | Line/
Fitting/
Defect/
Failure. | Shrapnel
strikes
employee | Injury,
Property
Damage | II | L | Design and review testing and certification. Relief devices. Employee training. | | 10 | Flammable
and/or
inert
gases | Building
utility
piping. | Operating | Earthquake | Pressur-
ized line
breaks/
fails. | Fire or
0 ₂ defi-
ciency | Fatality,
Injury,
Property
Damage | I | U | Earthquake shut off valves on house lines. Design and review certification and testing. | #### TABLE 1 (continued) PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL MODE | EVENT CAUSING HAZARDOUS CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|----------------------|---|------------------|---|---|--|--------------------|----------------------|---------------|---| | 11 | UV
radia-
tion | Welding,
soldering,
brazing | Operating | Normal operation | Employee
not wearing
protective | Employee
exposed to
UV radia-
tion equip. | Injury | Ш | L | Separate welding area personal protective equipment. Employee training. | | 12 | Electrical | General
Building
110/220
V circ. | Operatiny | Employee
Working
on live
circuit | Exposed
Wiring/
voltage | Electric
shock | Fatality
Injury | I | L | Design to codes.
Lock and tag
procedure.
Employee training. | | 13 | Electrical | Outlets
near
sinks | Operating | Employee
working
with water | Wet hands
or contact-
ing wet
area while
working
with elect-
rical equip. | Electric
shock | Injury
Fatality | I | V | GFIs installed on
all outlets near
testing sinks.
Employee training. | | 14 | Electrical | Elevator
Power
Supplies | Operating | Mainten-
ance
testing
of live
circuit | Exposed live terminals contacts, etc. | Electric
shock | Injury
Fatality | I | L | Restricted access.
Well enclosed
design. Employee
training. | #### TABLE 1 (continued) ## PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL
MODE | EVENT CAUSING
HAZARDOUS
CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|----------------------|------------------------------|---------------------|---|---|-----------------------|-------------------------------|----------------------|---------------|---| | 15 | Electrical | Battery
Supply | Operating | Object falls
across
terminals
of battery | Shorted
battery
terminals | Electric
shock | Injury,
Property
Damage | 11 | L | Restricted access.
Use of insulated
tools only in area.
Employee training. | | 16 | Hydrogen
Gas | Battery
Supply | Operating | Hydrogen
 | Flammable
gas mix-
ture of
hydrogen
and air | Hydrogen
fire | Injury,
Property
Damage | II | L | Ventilation. | ### TABLE 2: Unusual Hazards ## PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL
MUDE | EVENT CAUSING
HAZARDOUS
CUNDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|------------------------|----------------------------------|---------------------|---|----------------------------------|---|--|----------------------|---------------|---| | 1 | Cryogenic
fluids | Cryogenic
tanks
dewars | Transfer | Spill . | Spilled
cryogenic
fluid | Spilled
fluid
splashes
employee | Thermal
burn | III | M | Personal protect-
ive equipment.
Employee training. | | 2 | Cryogenic
fluids | Cryogenic
vessels
& piping | Operating | Over-
pressure | Equipment
defect/
failure | Shrapnel
strikes
employee | Fatality
Injury
Property
Damage | | U | Shielding. System design and review, pressure reliefs inspection and maintenance. | | 3 | Cryogenic
fluids | LN, LOX,
LAR tanks | Operating | Earthquake | Cryogenic
tank
failure | Spilled
fluid,
O ₂ defi-
ciency,
Thermal
effect | Fatality
Injury
Property
Damage | I | U | Remote location,
design for earth-
quake loading | | 4 | rf
radia-
tion | rf
heating
coils | Operating | Employee
removes
shielding | Unshielded
coil | Employee
in rf
field | Injury
thermal
burns | Ш | L | Shielding inspec-
tion/monitoring.
Employee training. | | 5 | microwave
radiation | Microwave
Ovens | Op eratin g | Door,
screen
damaged | Unshielded
microwave
field | Employee
in rf
field | Injury
thermal | 111 | L | Inspection/monitor-
ing. Employee
training. | #### TABLE 2 (continued) # PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL MODE | EVENT CAUSING
HAZARDOUS
CONDITION | HAZARDOUS
CUNDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|---|--------------------------------|-----------------------------------|--|--|---|--|----------------------|---------------|---| | 6 | Toxic and
Corrosive
Compress-
ed Gases | Chem Lab | Operating | System Failure Regula- tory | Release
of Toxic/
Corrosive
gas to
work area | Employee inhala- tion/skin exposure. Fire. Explosion. | Injury
Fatality
Property
Damage | II | L . | Training procedures Engineering controls Personal protective equipment | | 7 | Chemical | Building
and
Equipment | Operating
or non-
operating | Earthquake | Falling
Breaking
Chemicals | Thermal/ Chemical Burns, Toxic gases. Explosion. | Injury
Fatality
Property
Damage | II | L | Training procedures. Engineering controls. Personal protective equipment. | | 8 | Chemicals | Fume hood
and
ventilated | Operating | Exhaust Ventila- tion Failure. Loss of Electric- al power. | Release
of Toxic/
Corrosive
Vapors
and Gases | Inhalation
of Toxic/
Corrosive
Chemicals | Injury
Illness | 111 | L | Training procedures Engineering controls. | #### TABLE 2 (continued) PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL MODE | EVENT CAUSING HAZARDOUS CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|----------------------------|--|------------------|--|---|--|--|----------------------|---------------|---| | 9 | Radiation | X Ray | Operating | Scattering .
of X Rays | Hand in
Beam | X-Ray Burn
30,000 R/min | Injury | II | L | Shielding, inter-
locks, warning
devices, training,
procedures,
infrequent use. | | 10 | Radiation | Glove
Boxes | Operating | Transfer
In/Out | Sp111 | Lung Dose | Injury | III | L | Training, procedures, respirators, protective clothing, alarms, short time at risk. | | 11 | Radiation | Glove
Boxes | Operating | Penetrating
Radiation | Propin-
quity | Whole Body
Exposure,
Hand Exposure | Injury | IV | M | Shielding, Dosi-
meters, meters,
training, procedures. | | 12 | Reactive
Chemic-
als | Fume Hoods,
Glove Boxes
and Labs | | Unwanted
Rapid
Chemical
Reactions | Chemical
Splash,
Heat/Fire
Explosion | Chemical/
Thermal
Burns,
Shrapnel | Injury,
Fatality,
Property
Damage | II | M | Training procedures, engineering controls, personal protective equipment. | #### TABLE 2 (continued) PROBABILITY OF ACCIDENT ASSUMING PREVENTIVE ACTION H - High M - Moderate L - Low U - Unlikely | ITEM | HAZARDOUS
ELEMENT | SUBSYSTEM
OR
COMPONENT | OPERATIONAL
MODE | EVENT CAUSING HAZARDOUS CONDITION | HAZARDOUS
CONDITION | POTENTIAL
ACCIDENT | EFFECTS | ACCIDENT
SEVERITY | ACC.
PROB. | MITIGATING/
PREVENTATIVE
ACTION | |------|----------------------|------------------------------|---------------------|-----------------------------------|--|-------------------------------------|---------------------|----------------------|---------------|---| | 13 | Toxic
Chemicals | Chemistry
Labs | Operating | Chemical
Spill | Personnel
Exposure
to Toxic
Chemicals | Inhalation
or Skin
Absorption | Injury,
Property | 11 | M | Training procedures, engineering controls, personal protective equipment. | Table 3. Building 151 Operations Involving Radioactive Materials | Room
Number | Constant Air
Monitoring | Operation | Activity Used ¹
(Ci) | |----------------|----------------------------|---|------------------------------------| | 1033 | Yes | Rare earth extraction (mixed fission products) | 0.1 | | 1034W | Yes | Glass bead leaching (waste isolation project) | 10 ⁻⁹ | | 1034E | Yes | Electron microscope
Low level sample prep. | 10-6 | | 1039 | Yes | Aliquot room and storage of historical samples (mixed fission products) | 1 | | 1041 | Yes | Historical sample storage (mixed fission products) | 1 | | 1043 | Yes | Shot sample dissolving (mixed fission products) | 1 | | 1043A | Yes | Shot sample storage (mixed fission products) | 1 | | 1101 | Yes | Light chemistry + storage | 10-6 | | 1121A | No | Mass spectroscopy | 10-6 | | 1121B | No | Mass spectroscopy | 10-6 | | 1127 | No | Sample preparation for mass spectroscopy | 10 ⁻⁶ | | 1131A | No | Mass spectroscopy (gas) | 10-6 | | 1131B | No | Mass spectroscopy | 10 ⁻⁶ | | 1143 | No | Gas analysis
(fission products) | 10-3 | | 1143B | No | Gas sample storage (fission products) | 10-3 | | 1318
North | Yes | General mass spectroscopy | 10 ⁻⁶ | ^{*&}quot;Order of magnitude" estimates of the maximum activity present in these locations. Table 3. Building 151 Operations Involving Radioactive Materials (Continued) | Room
Number | Constant Air
Monitoring | Operation Operation | Activity Used
(Ci) | |----------------|----------------------------|--|--------------------------------------| | 1318
South | Yes | Volitilizer (heavy elements)
Tracer Storage (heavy elements) | 10 ⁻⁹
10 ⁻⁶ | | 1322 | Yes | TRU shot sample chemistry (transuranic elements) | 10 ⁻⁶ | | 1326 | Yes | Shot sample chemistry + tracer experiments with heavy elements | 10 ⁻⁹ | | 1330 | Yes | Shot sample chemistry (transuranic elements) | 10 ⁻⁹ | | 1334 | Yes | Gadolineum chemistry | 10-6 | | 1334B | Yes | Low level actinide analysis for isolation project radionuclide migration | 10 ⁻¹² | | 2103
North | Yes | Initial separation for shot sample chemistry (mixed fission products) | 10-3 | | 2103
South | Yes | Shot sample chemistry (fission products) | 10 ⁻³ | | 2107 | No | Bioassay (Hazards Control) | 10 ⁻⁶ | | 2109 | Yes | Shot sample chemistry (fission products) | 10 ⁻³ | | 2117 | Yes | Shot sample chemistry (fission products) | 10-3 | | 2121A | Yes | Sample weighing (mixed fission products) | 10 ⁻³ | | 2121 | Yes | Shot sample chemistry | 10-6 | | 2125 | Yes | X-ray fluorescence sealed sources + irradiated foil storage | 10-9 | | 2131 | No | Rock leaching experiment "synrock" with D-38 | 10-9 | | 2131A | No | X-ray fluorescence analysis | 10 ⁻⁹ | | | | | | Table 3. Building 151 Operations Involving Radioactive Materials (Continued) | Room
Number | Constant Air
Monitoring | Operation | Activity Used
(C1) | |----------------------|----------------------------|--|-----------------------| | 2133 | No | Detector studies | 10-9 | | 2135 | No
· | Environmental sample preparation | 10-9 | | 2143
2144
2147 | No
No
No | Environmental sample preparation and chemistry (³ H) | 10 ⁻⁹ | | 2149
2150 | · No
No | Environmental sample chemistry (Pu, U, Cs) | 10-9 | | 2302A | Yes | Shot chemistry Source preparation (fission products) | 10-3 | | 2302B | Yes | Sample weighing (fission products) | 10 ⁻³ | | 2308 | Yes | Shot chemistry (rare earth elements) | 10-4 | | 2312 | Yes | Shot chemistry (rare earth elements) | 10-4 | | 2318 | Yes | Shot chemistry and Os and Re chemistry | 10-4 | | 2322 | Yes | Shot chemistry and
Os and Re chemistry | 10=4 | | 2326 | Yes | Shot chemistry and Osmium chemistry | 10 ⁻⁴ | | 2330 | Yes | Shot chemistry and Os, Re, and Nb chemistry | 10-4 | | B-114 | Yes | GeLi counting room | 10-9 | | 3-120A | No | Radioactive materials storage (fission products) | 10 ⁻³ | Table 3. Building 151 Operations Involving Radioactive Materials (Continued) | Room
Number | Constant Air
Monitoring | Operation | Activity Used (Ci) | |----------------|----------------------------|---|--------------------| | B-120 | | Counting rooms | 10-3 | | B-122 | No | (fission products) | | | B-124 | No | (11111111111111111111111111111111111111 | | | B-126 | No . | | | | B-128 | No | | | | B-130 | No | | | | B-132 | No | | | #### <u>Situation</u> ## RADIONUCLIDE FIRE Y-91: 7.50-01 CURIE INHALATION CLASS: Y RELEASE FRAC.= 1.00+00 FILTER FACT.= 1.00+00 ZR-95: 8.50-01 CURIE INHALATION CLASS: Y RELEASE FRAC.= 1.00+00 FILTER FACT.= 1.00+00 NB-95: 1.40+00 CURIE INHALATION CLASS: Y RELEASE FRAC.= 1.00+00 FILTER FACT.= 1.00+00 CE-144: 1.00+00 CURIE INHALATION CLASS: Y RELEASE FRAC.= 1.00+00 FILTER FACT.= 1.00+00 PR-144: 1.00+00 CURIE INHALATION CLASS: Y RELEASE FRAC.= 1.00+00 FILTER FACT.= 1.00+00 FIRE REV-04/05/84 STABILITY = D WIND SPEED = 2.0 M/S RELEASE HEIGHT = 0 M #### Dose/Distance D = 0.1 KM 50-YR DOSE COMMITMENT: LUNG****** 4.63+00 REM EQUIVALENT WHOLE-BODY** 586.-03 REM D = 0.2 KM 50-YR DOSE COMMITMENT: LUNG******* 1.35+00 REM EQUIVALENT WHOLE-BODY** 171.-03 REM D = 0.5 KM 50-YR DOSE COMMITMENT: LUNG****** 279.-03 REM EQUIVALENT WHOLE-BODY** 35.3-03 REM D = 1.0 KM 50-YR DOSE COMMITMENT: LUNG****** 87.7-03 REM EQUIVALENT WHOLE-BODY** 11.1-03 REM D = 2.0 KM 50-YR DOSE COMMITMENT: LUNG****** 28.5-03 REM EQUIVALENT WHOLE-BODY** 3.61-03 REM D = 5.0 KM 50-YR DOSE COMMITMENT: LUNG****** 6.88-03 REM EQUIVALENT WHOLE-BODY** 861.-06 REM | | | | | · | • | | |---|---|---|----|---|---|--| 1 | | | | · | | | | | | | | | | | | | | ٠. | | | | | • | | | | | | | | | | • | · | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | · | ı | | | | | | | | | | | ### SARS DOCUMENTATION FORM NOTE: This form is designed to record the safety analysis review process required by DOE 5481.1A | 1 | . SAFETY ANALYSIS DOCUMENT TITLE AND Chemistry Building 151 June 29 | | |----|---|--| | 2. | . THIS DOCUMENT DESCRIBES: | | | | □ NEW FACILITY **EXISTING FAC | ILITY - ENTIRE PROGRAM | | | □ MAJOR MODIFICATION | | | 3. | DOE 5481.1A HAZARD CLASSIFICATION | | | | □ HIGH □ MODERATE | SE LOW DEXCLUDED | | 4. | CONTRACTOR LLNL | ★ Approval of Safety Documents | | | Man Exact | □ Authorization to Operate New/Modified Facility | | | Reviewed by: | Approved by: | | | 7/9/84
Date | Date | | 5. | FIELD OFFICE | □ Concurrence with Attached Safety Documents | | | | Authorization to OperateNew/Modified Facility | | | Reviewed by: | Line Program Official | | | Date | Date | | 6. | H. Q. PROGRAM OFFICE | © Concurrence with Attached Safety Documents | | | | Authorization to Operate
New/Modified Facility | | | Reviewed by: | Line Program Official | | | Date | Date | TABLE 5. Stockroom Chemicals (liters) | • | | | | |--------------------------|---|------------------------------|--| | <u>Description</u> | <u>Qty</u> | Description | <u>Qty</u> | | 1 4-Dioxane Reagent 1 Pt | 2 | Isopropyl Alcohol Purif | 18 | | Acetic Acid Glacial | 2 | Isopropyl Ether Reagent 2 PT | 2 | | Acetone Reagent | 48 | K Dichromate Reagent | 2 | | Alcohol Absol 200P 1 Pt | 24 | K Hydroxide R Pellets | 2 | | Aluminum Nitrate | 6 | K Phosphate Monobasic | 2 | | Aluminum Potas Sulfate | 2 | Magnesium Chloride 1 = | 2
2
2
2
2 | | Ammonium Chloride 1= | 2 | Mercury Hi Purity 5 1b | 2 | | Ammonium Hydroxide | 12 | Methanol Reagent | 48 | | Ammonium Nitrate | 8 | Nickel Metal Powder | 2
2 | | Ammonium Sulfate | 2 | Nitric Acid Fuming R | 2 | | Ammonium Sulfide | 2 | Nitric Acid Reagent | 60 | | Ascarite 8-20 Mesh | 2 | Oxalic Acid Reagent | 2
2 | | Ascorbic Acid Reagent | 2 . | Pentane Tech 2 KG size | 2 | | Barium Nitrate Reagent | 2 | Perchloric Acid 70(1 = | 24 | | Benzene Reagent | 2 | Perchloric Acid 8 lb | 2 | | Boric Acid Reagent 1= | 2 | Petroleum Ether R 30 | 2 | | Bromine Reagent 1/4 = | 2 | Phosphoric Acid Reagent | 2 | | Buffer Solution 4 PH | 2 | Potassium Chloride 1: | 2 | | Buffer Solution 7 PH | 2 | Potassium Iodide 1 = | 2 | | Cal Chloride ANHY 12 | 2 | Potassium Nitrate | 2 | | Calcium Carbonate | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | Potassium Pyrosulfate | 2 | | Carbon Disulfide | 2 | Rubidium Chloride | 2 | | Carbon Tetrachloride | 6 | Silver Nitrate 1/4 = | 2222222226322926 | | Cesium Chloride Purif | 2 | Soda Baking Arm & Hammer . | 6 | | Charcoal Active 80 Mesh | 2 | Sodium Bicarbonate USP | 3 | | Chloroform Reagent | 2 | Sodium Borate Reagent | 2 | | Chloroform Reagent 8 pt | 2 | Sodium Carbonate AN R | 2 | | Copper Metal Powder | . 2 | Sodium Chloride R 1 = | 9 | | Cupric Sulfate Reagent | 2
2
2
3
2
2 | Sodium Dichromate R 1 = | 2 | | Ether ANHY Reagent 1=1b | 2 | Sodium Hydroxide 1 N = | | | Ether U.S.P. 1/4 lb sz | 2 | Sodium Hydroxide 50 sol | 48 | | Ethyl Acetate ANHY | 3 | Sodium Hydroxide R 1 = | 2 | | Ethyl Alcohol 190 p 1 gl | 2 | Sodium Hydroxide R 5 = | 20 | | Ethylene Dichloride | | Sodium Metabisulfate R | 2 | | Ethylene Glycol 1 KG | . 2. | Sodium Peroxide 1/4 = | 2 | | Ferric Chloride Reagent | 2
2 | Strontium Nitrate ANHY | 2 | | Fluoboric Acid | 2 | Sucrose Reagent | 24 | | Glycerol Reagent | 2 | Sulfur Precipitated | 2 | | HCL Acid Reagent | 60 | Sulfuric Acid R 9 = | 2 | | HCL Acid Reagent Pt | 18 | Sulfuric Acid Reagent | 12 | | HCL Solution 1 Normal | 2 | Sulfurous Acid Reagent | 3 | | HYD-Amin Hydrochloride | 1 2 | Tartaric Acid R | 2
24
2
12
3
2
6
2 | | Hydrobromic Acid | 2 | Toluene Reagent | þ | | Hydrofluoric Acid | 36 | Xylene Reagent | Z | | Hydrogen Peroxide 3 Pct | 6 | Zinc Sulfate Reagent | 2 | | Hydrogen Peroxide 30 P | 24 | | • |